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This paper deals with forces and moments that influence the gearing pair of the rotary trochoidal pump. The
objective of this study was to analyze the impact of the pump chamber to load distribution in trochoidal pumps with
fixed shaft axes. Problem of contact forces determination is a complex one because of the fact that load is transferred,
at the same time, into several contact points. Besides that, there is the analysis of fluid pressure forces which act on
the gear wheel tooth flanks and which depend on a large number of influential parameters. A simple physical model
and an appropriate analytical method are applied. For the verification of the analytical method, as well as for
computation of current moments and support reaction, the finite element method was used.
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Introduction

EOMETRY of the trochoids and their coupled

envelopes is defined and analyzed in detail in [1-3].
Modifications of the trochoids and definitions of
geometrical limitations are analyzed in [4-6]. A kinematic
analysis of the trochoidal gearing in the gerotor is presented
in papers [7, 8]. The application of the modern theory of
gearing in the generation of cycloidal gearing is presented
in [9-14]. The methodology for the selection of the optimal
shape profile of teeth for lubrication pumps is described in
paper [15].

This paper deals with the gearing of the trochoidal pump
gearing pair where the outer gear has one more tooth than
the inner one. The inner gear profile is described by
peritrochoid equidistant while the profile of the outer gear
is described by a circular arc with r, radius. For trochoidal
gearing, meshing of all teeth is obtained, at the same time,
with theoretical profiles of gearing. This is the reason that
general equations of profile point coordinates need to be
established, so that they could be applied for all teeth.
Towards derivation of coordinates equations for any P
contact point, it was needed to generalize the geometric
relations between the rotation angles of the trochoidal
gearing couple elements. A kinematic pair model with the
fixed gear shaft axes was adopted, whereby the drive shaft
is connected to the inner gear. Further on, forces and
moments that act on the gearing pair of the rotary
trochoidal pump are discussed. A modified analytical
method presented by Colbourne and Maiti in their papers
[16, 17] is applied for the analysis of forces and moments.
For the verification of the analytical method, as well as for
the calculation of current moments and support reaction, the
finite element method was used [18, 19].

Gearing geometry

Before the analysis of trochoidal profiles meshing, the
applied coordinate systems and the geometric relations
between the rotation angles in different coordinate systems
will be presented. The basic geometric relations for the
generation of peritrochoid, which is adopted for defining
the basic profile at the observed gear pump, are shown in
Fig.1. The center and the radius of movable (generative)
circle are marked as O, and r,, respectively, while O, and
r, denote those values for the stationary (main) circle. The
eccentricity of the trochoid, marked as e, represents the
distance between the two centers of the circle. The
generative coordinate system O,X;Y; is tied to the center of
the movable circle. The generative D; point is the point that
describes the trochoid and is placed at the x; axis at the d
distance from the O, center and represents the size of the
radius of the trochoid. The reference line is determined by
the line that connects O, and O, centers and that goes
through the contact point of the two circles, that is, through
the kinematic pole C . In order to represent the trochoidal
profile in the analytical form, the coordinate system O;x;Y;
of the trochoid is introduced and its start is set up at the
center of the stationary circle, while the abscissa goes
through the starting contact point of the given kinematic
circles. The coordinate system O,X,y. of the envelope is
tied to the center of the movable circle. The stationary
coordinate system O;X;y; is tied to the center of the

kinematic circle of the trochoid, that is, O; =0O,. All

coordinate systems are of the right orientation. At the
starting instant, the positive part of the x, axis for the inner
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gear is tied to the tip of the starting tooth, while the positive
part of the x, axis for the outer gear concurs with the
centerline of the hollow between the meshing teeth.

Figure 1. Schematic presentation of the gearing pair of the trochoidal
pump and of the basic geometric variables for the P; contact point and for
the Pj.; contact point

The position vector of the P contact point in the
coordinate system of the trochoid can be written in the form

of the following matrix relation:
e[cos z¢ + Azcos @ —ccos(s + 6 )]
rl) =| e[sinzg +Azsing —csin(4+8)] |. @
1

In equation (1) A is the trochoid coefficient as

d

ez’ (2

where c is the coefficient of the equidistant radius as

-l
C=%" ©)

@ is the angle between the x, and x, axes

bh=n+0 4

w is the angle between the x, and x; axes
7; is the angle between the x; and x, axes

:72(2i—1)

Ti 7
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and &; is the leaning angle as

sin(z; —y)

A—cos(zi—y) ©

o; = arctan

In the coordinate system of the O,x,y. envelope, the
position vector of the P contact point is given as in the
equation:

e[zAcosz; —ccos(z; + 6 )]

r) =Myr) =| e[zsinz —csin(z; +6,)] (7)
1

where M is the transformation matrix from the trochoid

coordinate system into the envelope coordinate system as

. inY_
cosz_1 smz_1 ecosy
—| —sin¥_ Y asi
M, = sz—l cosz_1 esiny |. (8)
0 0 1

By the application of the following matrix equation
) =Mary, ©

where My, is the transformation matrix from the envelope
coordinate system into the stationary coordinate system as

cosy siny —e
M =|=siny cosy O |, (10)
0 0 1

an equation of the contact line of the meshing profiles is
obtained as:

e[zAcos(z; —y)—1-ccos(z; —y +6;)]
ri" =| e[zsin(z —y)-csin(z—w+8)] | @
1

After defining the gearing geometry of the gerotor pump
gearing pair and after establishing a basic kinematic model,
calculation of forces and moments, which act on the gears,
is enabled.

Load analysis for trochoidal pumps with stationary
shaft axes

Both analytical and numerical methods are applied
within the scope of this paper, in order to solve problems in
connection with load analysis for the trochoidal pumps with
the stationary axes of shafts.

In the first part of the paper, the analytical method is
presented for the computation of current moments and
contact forces at trochoidal pumps with stationary shaft
axes and when the drive shaft is tied to the inner gear.
When the drive moment affects the inner gear it will rotate
around its axis until achieving gear deformation of such a
magnitude to create forces whose resulting moment around
the center of the outer gear is equal to the moment of the
fluid pressure force around that same point.

Fluid pressure force

During the calculation of the fluid pressure force the
assumption was made that pressure change within chambers
can be neglected, i.e. the pressure in all chambers of the
same zone (the suction inlet or the pressure outlet
chambers) is of a constant value, pjy, = const,

Pi(outy = CONst . In this case, the fluid pressure force which

separates the suction inlet chambers from the pressure
outlet chambers is a continuous force that can be
represented by the equivalent concentrated pressure force
F,, whose vector's direction coincides with the centerline

of the line segment AB that connects two contact points at
the separation borderline between the suction inlet
chambers and the pressure outlet chambers zones, as shown
in Fig.2. In accordance with this, the equivalent pressure force
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in the pump can be expressed in a vector form such as:
F(" = —Apbk; x AB("), 12)

where Ap is the pressure drop at the pump and b is the gear
width.

contact line
outlet

Figure 2. Fluid pressure force and contact forces that act on the inner gear
at a random instant ( @, =55°) [18]

The vector AB that connects two contact points at the
separation borderline between the suction inlet chambers
and the pressure outlet chambers zones can be expressed as
a difference between the position vectors for these points in
a stationary coordinate system as:

X(Bf)—x,&f)
AB! =gl = [y -y . (13)
0

When equation (13) is inserted into equation (12) the
following resulting expression is obtained:

it it Ky
F(Y =—Apb| 0 0 1. (14)
41D ) o

The moment of the equivalent pressure force, in relation
with the current center of the rotation C can be expressed in
the following form of the vector multiplication equation:

M) =csth < F(D, (15)
where S is the central point of the vector AB (Fig.2).

Based on the geometric relations shown in Fig.2, the
following vector relations can be written as:

CS=3(CA+CB). (16)

By applying the rules of vector addition, the following
expression is obtained:

cst =4[ (x+ i + (e +yie)ic ] am

Starting with equation (12), the equivalent pressure force
can be expressed by the next form:

RO = apb | (yeg - ¥R )ir —(xkg —xER)ie | a9

By putting equations (17) and (18) into (15), the
equivalent pressure force moment in the pump can be
expressed in the form of the following relation:

it it Ky
My = AR Yy ] ol e
Apb| g - yER | —apb[ xg -x] 0
which can be represented in the simpler form as:

f pb 2 2
M) = Z2(ICAf -[CBF )k (20)
The resultant of all the contact forces that act on the

inner gear is obtained as their vector sum:

Z
Fo= > Fu )
i=1

whereby its vector endpoint coincides with the kinematic
pole C.

After the realised procedure and with the application of
the obtained expressions for calculating external load, the
analysis of load distribution can be started. Two cases are
distinguished as follows [17, 18, 19]:

1. case I, when the vector line of pressure force goes be-
tween the centers of the gears;

2. case Il, when the vector line of pressure force does not
go between the centers of the gears.

For both cases, a position exists for which the vector line
of pressure force goes through the center O, , which points
to the moment when, theoretically, the contact forces do not
exist, i.e. some teeth leave the contact and contact load is
transferred to another teeth. Then, in case Il, the moment of
contact forces changes its sign.

Unlike with models with planetary movement, where
fluid pressure force is balanced by the resultant of contact
forces, the support reaction, denoted as F, is included in
equilibrium equations for the model used in this paper.
Unknown forces that act on the gear, including the support
reaction, are determined from the conditions of equilibrium,
for the two-dimensional system of forces, i.e. it is necessary
for both the resultant force and the resultant moment to be
equal to zero. For the observed pump model, the force
equilibrium equation in a vector form can be written as:

Fo+F+F=0. (22)

Then, the moment of equilibrium equations can be
written, in relation to the point O; :

MFp(Ot)+MFn(Ot)+Ml:0 (23)
and in relation to the point O, :
MFp(Oa)+MFn(oa) =O (24)

When the moments from the previous equations are
expressed in a form of vector multiplication equations, the
following expressions are obtained:

O SxF, +O,CxF,+M; =0 (25)

and
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0,SxF, +0,CxF, =0 (26)

From equations (24) and (26), the moment of contact
forces can be expressed as:

f f f f
M(Fn)(oa) - _M(Fp)(oa) - _OaS( ' F'(J ) ' @7

Based on the geometric relations shown in Fig.2, the
following vector relation can be written:
0,8 =3(0A+0B), (28)
That is,
0.s(f) :l[(x(f)”(f))i +(y(f)+y“))j ] (29)
t 2 A B f A B ol
In a similar way, the following relations can be written:

0,5=0,5-0,0,, (30)

0,0'") = —ei (31)

and after their arrangement, the final expression is obtained
as:

0,811 =2 (443" + 2e)i + (v + v§") i |- 2

By putting equations (14) and (32) into (27), the moment
of equivalent contact force in relation to the point O,, can
be expressed in a form of the following vector relation:

iy Ik Ky
VI =—%[x5\f)+ng)+2e] —%[y&fuyéfq 0|@33)
~apb v - ys" ] apb[ X -x"] 0

or in a scalar form as:
A b 2 2
N CURCU R

The moment of equivalent contact force in relation to the
point O,, can be written in a form of the following vector
relation:

f

M(Fp)(o[) =08 xF{" (35)

which, by putting equations (29) and (14) in it, results in the
following form:

if jf kf
Migton =| 00" +x67 ] 3D+ ] 0w
o] a4 o

The equation can be expressed in a scalar form as:

LT T,

In equation (22), only the vector of the fluid pressure
force, F,, is completely defined. Because of that, it is

suitable for further calculation to write equation (23) in a
scalar form as:

Ml:_MFp(Ot)J’_MFp(Oa)ZT_l’ (38)

and then the moment of equivalent contact force can be
determined, in relation to the center of the inner gear, O,,
which is necessary for the calculation of the contact forces.

Contact forces

During the gear motion, total normal load is transferred
by synchronous teeth meshing of the gearing pair. The
influence of the normal force F, on the meshing teeth
provokes the appearance of the local deformation of the
tooth and shifting of the contact point of w,; magnitude, in
direction of the force action. The consequence of the
deformation is the angle of the displacement v and based on
Fig.2, the relations can be established between them as
follows:

Wi =rtosinag | @2)

with an assumption that the elementary angle of the
displacement o is equal for all contact points [20]. In
equation (42), ap is the angle between the direction that
connects the center of the inner gear, O, with the contact
point P, and of the vector line of the normal force F .
The normal force is proportional to the deformation in
the normal direction as:
Fni = kWni ) (43)

where Kk is gear rigidity and is considered to be a constant.
Based on the geometric relations that apply to the triangle
O,RC according to Fig.2, the following can be stated:

(f) _ 1 sinay,; 4
o' =e( )sinaﬂ =

where «,; is the angle between the x; axis and the CP;

vector, as given in Fig.2.
For the determination of the «,; angle, it is necessary to

define the CPi(f) vector. The position vector of the point C
in the O X; y¢z; coordinative system can be written in the
following form:
rt") =e(z-1)i; (45)
Going from the geometric relation given in Fig.2 and equations
(11) and (45), the CPi(f) vector can be expressed as:
PN =t ") @9)
e[zAcos(z; —y)—z—ccos(z; —y +6,)]

e[zAsin(z —y)-csin(zi -~y +5)] | @7
1

cp!’) =

and the angle a,; as:
()
chi

f
K

oy = arctan

(48)
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If the deformation w,; in the contact point P is larger
than zero, it means that contact is realised in that point.
However, if the deformation w,; in the contact point P, is
negative or equal to zero, contact is not realised and those
contact points do not participate in load distribution. A total
moment of normal forces is equal to the sum of the
moments of normal forces for individual teeth pairs, around
the gear center as:

q q
2 .
MFn(O[)=ZMH“(Ot):kUZe2(z—1) sin oy (49)
i=p i=p

where p and q are ordinal numbers of the starting and the
final tooth of the outer gear, which transfer load and k, is
an introduced constant equal to k, =ko. The constant k,, ,
whose value is necessary for the calculation of the contact
forces, is obtained by the iterative procedure of solving

equation (49) with the application of the following
condition:

. (50)

My o= ZT_:L‘MFp(Oa)

After the identification procedure of the teeth pairs that
transfer load and contact forces calculation, an appropriate
contact stress calculation is realised by using methods
presented within references [16, 17]. A graphical
representation of the analytical calculation of torque
moments is given in Fig.3 and of contact forces in Fig.4.

z=5, A=1.85

16 ‘
14 t--cco-mmm - e

Torque [Nm]

Reference angle [°]
(b)

Figure 3. Results of the analytical calculation of the torque: (a) z=6 and
(b) z=5

In order to illustrate the proposed procedures for the
analysis of load trochoidal gear pairs as well as the
comparative analysis of the results, two gear sets are
selected, with their geometrical parameters given in Table
1. Other parameters are: e=3.56 mm, b=16.46 mm, rs=26.94

mm, Ap=0.6 MPa, =900 kg/m°’, n=1500 rpm,
o =2zn, =507s7t.
Table 1: Geometrical parameters for the two gear set

Parameters z A ©

Gear set | 5 1.85 3.75

Gear set 1l 6 1.575 3.95

Other parameters are: €=3.56 mm, b=16.46 mm,
r=26.94 mm, Ap=0.6 MPa, =900 kg/m? n=1500 rpm,
o =270, =50757.

The results are presented in the function of the reference
angle ¢,, for a period corresponding to the phase difference

between two adjacent chambers, ie. ¢@,=2x/z, where the
calculation repeated for nine angular positions.

z=6, A=1.575
1,6

1,4
1,2

Torque [Nm]
o
[oe]

Reference angle [°]

@
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Figure 4: Results of the analytical calculation of the contact forces: (a)
z=6 and (b) z=5

After the comparison of charts for various models of
pumps, it can be concluded that the model with an odd
number of teeth (z = 5) has a different character torque
ripple from the model with even numbers of teeth, and the
different distributions of the contact force. This is the
implication of changing the sign of the contact force
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moment during one phase of the work process. The highest
values of the contact force are realized in the initial stages
of the working process and they are increased in the pump
with an odd number of chambers. It can be seen in Fig.4,
where the teeth denoted with 4 and 5 do not make contact
during the consideration phase.

Analysis of forces and moments by the application
of the finite elements method

The load simulation for the trochoidal pump gears by the
application of the CATIA software module for structural
analysis is presented in this part of the paper. In order to
realize the structural analysis, it is necessary to follow a
certain procedure [18], which will be described in the
following text.

Geometric model

A basic model used in the structural analysis corresponds
to the inner cylindrical gear of the trochoidal pump. The
geometric model is created within the PART module of the
CATIA software package. It starts from the geometric
shape of the profile of the cylindrical gear teeth based on
the analytical-kinematic model [18], and by running the
built computer program. The main CAD model of the
unloaded gear contains 20 line segments.

Grid generating

During the first phase of the numerical model
preparation, a three-dimensional tetrahedral grid of variable
fineness is generated. A part of the grid around the contact
force line is with discrete elements of the biggest fineness
(0.75 mm element side length) and the rest is done with an
element size of 1.5 mm. The gear shown in Fig.5 is
modeled with 6779 nodes and 29260 finite elements, and
the gear in Fig.6 is modeled with 6546 nodes and 27861
finite elements.

Boundary conditions of the numerical model

The boundary conditions are defined in accordance with
the theoretical analysis of gears. The motion limit is set up
on the surface that lies on the drive shaft and here all types
of motion are forbidden such as: radial, axial and all
rotations. In order to obtain the results, the torque moment
and the support reaction force as well as the sensor in the
gear section plane are defined.

Mechanical loads in the numerical model

During pre-processing, it is necessary to enter values for
the forces that react with the gear, therefore defining all
necessary parameters for processing, i.e. for the structural
analysis by the finite elements method. For structure load,
the relative pressure at the suction inlet and at the pressure
outlet side is set up as well as the contact forces. The
assumption is also made that the normal force F,; is evenly
distributed along the current line of the teeth flanks contact.
By this, a computation model is completely described and
statically determined.

The fluid pressure force is simulated by concentrated
forces which act perpendicularly to the finite elements
surfaces, which is illustrated in Fig.5. The presentation of
the input forces for the load state with the angular position
@,=25° is given in Fig.6, and for ¢,=24° in Fig.7.
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Slika 5. Detail of the visualization of the discrete load gear
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Figure 6. Model of the discrete gear simulation with forces defined and

the results of visualization, z=6
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Figure 7. Model of the discrete gear simulation with forces defined and
the results of visualization, z=5

Within the scope of static investigations, two separate
computations are made:

1. only fluid pressure is set up as a structure load in the
first case,

2. fluid pressure and contact forces are set up as a structure
load in the second case.

The output results for the first case are the fluid pressure
force and the moment which is equivalent to the contact
forces moment. The obtained results are used for the
analytical determination of contact forces. After the
calculation of forces, the input of load to the model is done
and then the calculation is realised with the drive moment
and the support reaction force as output results. The second
case is related to the real system, while the first case is
comparatively important and issues data necessary for the
load simulation in the second case. The output results are
support reaction force and the drive moment as shown in
Fig.7. The direct readout of the values of their projections
on global coordinative system axes is enabled as well as the
readout of the resulting algebraic values that has been used
for the diagram drawing.

Graphical presentation and the analysis of computational
results

It was necessary to repeat the procedure of the structural
analysis several times for each chosen gear model, in order
to realize the numerical computation. The number of
repeating was nine for the computation model, i.e. eighteen
for both calculations. The analysis was done for different
angular positions starting from ¢,=0 until the final position
that corresponds to the starting position of the following
tooth, i.e. p,=27z/z (Table 2).

Table 2: Angle positions of the gears for the load calculation

Positions 2. [°]

=6 =5

0 0

5 12
15 24
25 27,6155
30 36
35 44,3845
45 48
55 60
60 72

The comparative values of the drive moment obtained by
the analytical and the numerical method are shown in Fig.8.
A very slight deviation of values indicates that the
previously mentioned approximation, where the continuous
force is represented by the equivalent concentrated pressure
force, can be used for analytical calculations of load
distribution at trochoidal pumps.

1.4

1,38
1.36
1,34
- 1,32
E 1.3 — g nalytical
< L28 —— numerical
1,26
1.24
1,22
o 10 20 £ 1) 40 50 60
ipa 7]
G
1.36
1,34 — analytical
1.32 — numerical
= 13
E
£ 1,28
=

4] 12 24 16 43 &0 T2

paltl
(b)
Figure 8. Results of the analytical and numerical calculations: (a) z=6 and
(b) z=5
The comparative values of the fluid pressure force
obtained by the analytical and the numerical methods for
individual angular positions are shown in Fig.9.
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Figure 9. Results of the analytical and the numerical computations of the
fluid pressure force: (a) z=6 and (b) z=5
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Figure 10. Charts of the numerical calculations as results of the fluid
pressure force and the support reaction: (a) z=6 and (b) z=5

The dependence of the fluid pressure force F, and the

support reaction force F, on the reference rotation angle,
for one phase of the pump working process, for both gear
sets, is shown on the charts in Fig.10. These charts provide
information on the domain of the force equivalent to the
contact forces resultant as well as information about the

angular position where the interchange of load between the
adjacent teeth occurs.

Conclusions

On the basis of the derived results, it can be concluded
that the pumps with the same kinematic scheme, but with a
different number of teeth, can have different static load
models. Using the analytical method, the identification of
teeth contact during one phase of the working process
pumps is performed as well as the calculation of the contact
force and the working moments. The highest values of the
contact force are realized in the initial stages of the working
process. They are also higher in the pump with an odd
number of chambers. The values of the fluid pressure force
F, and the drive moment M,;, obtained by numerical

computation, are only slightly different from their
analytical results. Both analytical and numerical method
give satisfactory results necessary in analysing the
influence of the variation of input parameters on the
magnitude of contact forces.

Further research will be focused on the analysis of
contact stress changes at gerotor pumps and the
development of a model to identify the optimal geometric
parameters of trochoidal gearing, towards the reducing of
maximum contact stress.
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Analiticka i numeri¢ka analiza optereé¢enja gerotorskih pumpi

U ovom radu se razmatraju sile i momenti koji deluju na zupéasti par gerotorske pumpe. Cilj ovog rada je analiza
uticaja broja komora pumpe na raspodelu optereéenja trohoidnih pumpi sa nepokretnim osama vratila. Problem
odredivanja kontaktnih sila je kompleksan s obzirom na to da se kod pumpi sa trohoidnim ozubljenjem optereéenje
prenosi istovremeno u vise taéaka dodira. Osim toga, razmatraju se sile pritiska fluida koje deluju na bokove zubaca
zupéanika, a koje zavise od velikog broja uticajnih parametara. 1z tih razloga, primenjen je jednostavan fizi¢ki model
i odgovarajuéa analiti¢ka metoda. U ovom modelu kontinualna sila pritiska se aproksimira koncentrisanom silom &ija
je napadna tacka u srediStu linije razdvajanja usisne i potisne zone. Za verifikaciju analiticke metode, kao i za
proraéun trenutnih momenata i reakcije oslonca primenjena je metoda konaénih elemenata.

Kljuéne reci: pumpe, gerotor, zupéasti par, ozubljenje, kontaktno optereéenje, analiza optereéenja, analiza sila,

metoda konaénih elemenata.

AHATUTHYCCKMA ¥ HM(POBOI aHAJIN3 HATPY3KH I'ePOTOPHBIX HACOCOB

B HacTtosimeii paboTe paccMaTpUBaIOTCs CHJIBI U MOMEHTHI JeiicTByIomMe Ha 3y04aTyio IIapy repoTOpHOro Hacoca.
IHennio 370l padoThI SIBJISIETCSl AHAJIM3 BJIHSIHUS YHC/IA KaMep HAacoca Ha pacnpeieleHde HATPY3KH TPOXOUAAIbHBIX
HACOCOB C HEMOABIIKHBIMH ocaMHu Baja. IIpo6;iemMa ompeneneHusl KOHTAKTHBIX CHJ OUeHb CJI0XKHAS, YYUTHIBAs TO,
YTO y HACOCOB € TPOXOMIAJbHOIl HAaceukoil Harpyska mnepegaércsi OJHOBPEMEHHO B 00JIbIIOE YHCJIO TOYEK
conpukocHoBeHusi. Kpome Toro, 31ech paccMaTpHBalOTCsl CHJIbI HANPSKEHUs KMAKOCTeH JeiicTBylomHe Ha 00KH
3y0l0B Yy 3y04uaToro KoJeca, KOTOpble 3aBUCST OT 00/IbIIOr0 YHC/IA BJIUSAIOIIUX mapamMerpos. M3-3a 3THX mpH4uH,
NpHMeHeHa mnpocrasi ¢usnyeckass MoJeJb M COOTBETCTBYIOIIMI aHaJuTHYecKHMii MeTox. B 3rToii momenn
HeNpepbIBHAS CHJIA JaBJeHHS NPHOIH3UTEILHO ONpeesieTcsi CHIOH COCPeJOTOYeHHsI, Ybsl TOUKA HPHJIOKEHHUS
HaxoauTcs B (oKyce JIMHMH OTPbIBA 30HbI BCACBIBAHMUS OT 30HBI TArW. [l KOHTpoJast M OGHIHAILHOIO
MOATBEP KIEHUs] AHATUTHYECKOT0 METO/a, 2 B TOM YHCJe H pPacyéTa MrHOBEHHBIX MOMEHTOB H ONOPHOI peaKkIHu

31eCh l'lpl/IMEHéH MeTO0d KOHCYHBIX 3JIECMEHTOB.

Kly~evwe slova: Hacocel, reporop, 3youarasi mapa, Haceuka, KOHTAKTHAsl HArPy3Ka, aHAJIM3 HATPY3KH, aHAJIN3

CHJI, METOA KOHEYHBIX JJIECMEHTOB.

Analyse analytique et numérique de la charge chez les pompes gérotors

Les forces et les moments qui agissent sur le pair denté des pompes gérotors sont considérés dans ce papier. Le but de
ce travail est I’analyse de I’influence du nombre des chambres de la pompe sur la distribution de la charge chez les
pompes trochoidales aux axes fixes des arbres. Le probléme de la détermination des forces de contact est complexe
étant donné que la charge est transférée simultanément a plusieurs points de contact chez les pompes aux dentures
trochoidales. En outre, on considere les forces de pression du fluide qui agissent aux flancs des dents de I’engrenage et
ces forces dépendent de nombreux paramétres importants. Pour cette raison, on a utilisé un modele physique simple
ainsi qu’une méthode analytique appropriées. Chez ce modele la force continue de pression se rapproche a la force
concentrée dont le point d’attaque se trouve au centre de la ligne de démarcation de la zone de succion et de celle de la
poussée. Pour vérifier la méthode analytique, ainsi que la computation des moments courants et la réaction du

support, on a employé la méthode des éléments finis.

Mots clés: pompe, gérotor, pair de dents, denture, charge de contact, analyse de la charge, analyse des forces, méthode

des éléments finis.





