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This paper deals with forces and moments that influence the gearing pair of the rotary trochoidal pump. The 
objective of this study was to analyze the impact of the pump chamber to load distribution in trochoidal pumps with 
fixed shaft axes. Problem of contact forces determination is a complex one because of the fact that load is transferred, 
at the same time, into several contact points. Besides that, there is the analysis of fluid pressure forces which act on 
the gear wheel tooth flanks and which depend on a large number of influential parameters. A simple physical model 
and an appropriate analytical method are applied. For the verification of the analytical method, as well as for 
computation of current moments and support reaction, the finite element method was used. 
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Introduction 
EOMETRY of the trochoids and their coupled 
envelopes is defined and analyzed in detail in [1-3]. 

Modifications of the trochoids and definitions of 
geometrical limitations are analyzed in [4-6]. A kinematic 
analysis of the trochoidal gearing in the gerotor is presented 
in papers [7, 8]. The application of the modern theory of 
gearing in the generation of cycloidal gearing is presented 
in [9-14]. The methodology for the selection of the optimal 
shape profile of teeth for lubrication pumps is described in 
paper [15]. 

This paper deals with the gearing of the trochoidal pump 
gearing pair where the outer gear has one more tooth than 
the inner one. The inner gear profile is described by 
peritrochoid equidistant while the profile of the outer gear 
is described by a circular arc with cr  radius. For trochoidal 
gearing, meshing of all teeth is obtained, at the same time, 
with theoretical profiles of gearing. This is the reason that 
general equations of profile point coordinates need to be 
established, so that they could be applied for all teeth. 
Towards derivation of coordinates equations for any iP  
contact point, it was needed to generalize the geometric 
relations between the rotation angles of the trochoidal 
gearing couple elements. A kinematic pair model with the 
fixed gear shaft axes was adopted, whereby the drive shaft 
is connected to the inner gear. Further on, forces and 
moments that act on the gearing pair of the rotary 
trochoidal pump are discussed. A modified analytical 
method presented by Colbourne and Maiti in their papers 
[16, 17] is applied for the analysis of forces and moments. 
For the verification of the analytical method, as well as for 
the calculation of current moments and support reaction, the 
finite element method was used [18, 19]. 

Gearing geometry 
Before the analysis of trochoidal profiles meshing, the 

applied coordinate systems and the geometric relations 
between the rotation angles in different coordinate systems 
will be presented. The basic geometric relations for the 
generation of peritrochoid, which is adopted for defining 
the basic profile at the observed gear pump, are shown in 
Fig.1. The center and the radius of movable (generative) 
circle are marked as aO  and ar , respectively, while tO  and 

tr  denote those values for the stationary (main) circle. The 
eccentricity of the trochoid, marked as e , represents the 
distance between the two centers of the circle. The 
generative coordinate system a i iO x y is tied to the center of 
the movable circle. The generative iD  point is the point that 
describes the trochoid and is placed at the ix axis at the d  
distance from the aO  center and represents the size of the 
radius of the trochoid. The reference line is determined by 
the line that connects tO  and aO  centers and that goes 
through the contact point of the two circles, that is, through 
the kinematic pole C . In order to represent the trochoidal 
profile in the analytical form, the coordinate system t t tO x y  
of the trochoid is introduced and its start is set up at the 
center of the stationary circle, while the abscissa goes 
through the starting contact point of the given kinematic 
circles. The coordinate system a a aO x y  of the envelope is 
tied to the center of the movable circle. The stationary 
coordinate system f f fO x y  is tied to the center of the 
kinematic circle of the trochoid, that is, f tO O= . All 
coordinate systems are of the right orientation. At the 
starting instant, the positive part of the tx  axis for the inner 
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gear is tied to the tip of the starting tooth, while the positive 
part of the ax  axis for the outer gear concurs with the 
centerline of the hollow between the meshing teeth.  
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Figure 1. Schematic presentation of the gearing pair of the trochoidal 
pump and of the basic geometric variables for the Pi contact point and for 
the Pi+1 contact point 

The position vector of the iP  contact point in the 
coordinate system of the trochoid can be written in the form 
of the following matrix relation:  

 ( )
( )[ ]
( )[ ]

cos cos cos
sin sin sin

1
i

i i i i
t

i i i iP

e z z c
e z z c

φ λ φ φ δ
φ λ φ φ δ
+ − +⎡ ⎤

⎢ ⎥= + − +⎢ ⎥
⎢ ⎥⎣ ⎦

r . (1) 

In equation (1) λ is the trochoid coefficient as  

 d
ezλ = , (2) 

where c is the coefficient of the equidistant radius as 

 crc e= , (3) 

iφ  is the angle between the tx  and ax  axes 

 1i i z
ψφ τ= +
−

, (4) 

ψ  is the angle between the ax  and fx  axes 

iτ  is the angle between the ix  and ax  axes  

 
( )2 1

i
i
z

π
τ

−
=  (5) 

and iδ  is the leaning angle as 

 
( )
( )

sin
arctan

cos
i

i
i

τ ψ
δ

λ τ ψ
−

=
− −

. (6) 

In the coordinate system of the a a aO x y  envelope, the 
position vector of the iP  contact point is given as in the 
equation: 

 ( ) ( )
( )[ ]
( )[ ]

cos cos
sin sin

1
i i

i i i
a t

at i i iP P

e z c
e z c

λ τ τ δ
λ τ τ δ

− +⎡ ⎤
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r M r  (7) 

where atM  is the transformation matrix from the trochoid 

coordinate system into the envelope coordinate system as 

 

cos sin cos1 1
sin cos sin1 1

0 0 1
at

ez z
ez z

ψ ψ ψ
ψ ψ ψ

⎡ ⎤
⎢ ⎥− −
⎢ ⎥
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⎢ ⎥
⎣ ⎦

M . (8) 

By the application of the following matrix equation  

 ( ) ( )
i i
f a

faP P=r M r , (9) 

where faM  is the transformation matrix from the envelope 
coordinate system into the stationary coordinate system as  

 
cos sin
sin cos 0
0 0 1

fa

eψ ψ
ψ ψ

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

M , (10) 

an equation of the contact line of the meshing profiles is 
obtained as: 

 ( )
( ) ( )[ ]
( ) ( )[ ]

cos 1 cos
sin sin

1
i

i i i
f

i i iP

e z c
e z c
λ τ ψ τ ψ δ
λ τ ψ τ ψ δ

− − − − +⎡ ⎤
⎢ ⎥= − − − +⎢ ⎥
⎢ ⎥⎣ ⎦

r . (11) 

After defining the gearing geometry of the gerotor pump 
gearing pair and after establishing a basic kinematic model, 
calculation of forces and moments, which act on the gears, 
is enabled.  

Load analysis for trochoidal pumps with stationary 
shaft axes 

Both analytical and numerical methods are applied 
within the scope of this paper, in order to solve problems in 
connection with load analysis for the trochoidal pumps with 
the stationary axes of shafts. 

In the first part of the paper, the analytical method is 
presented for the computation of current moments and 
contact forces at trochoidal pumps with stationary shaft 
axes and when the drive shaft is tied to the inner gear. 
When the drive moment affects the inner gear it will rotate 
around its axis until achieving gear deformation of such a 
magnitude to create forces whose resulting moment around 
the center of the outer gear is equal to the moment of the 
fluid pressure force around that same point.  

Fluid pressure force 
During the calculation of the fluid pressure force the 

assumption was made that pressure change within chambers 
can be neglected, i.e. the pressure in all chambers of the 
same zone (the suction inlet or the pressure outlet 
chambers) is of a constant value, ( )i inp const= , 

( )i outp const= . In this case, the fluid pressure force which 
separates the suction inlet chambers from the pressure 
outlet chambers is a continuous force that can be 
represented by the equivalent concentrated pressure force 

pF , whose vector's direction coincides with the centerline 
of the line segment AB  that connects two contact points at 
the separation borderline between the suction inlet 
chambers and the pressure outlet chambers zones, as shown 
in Fig.2. In accordance with this, the equivalent pressure force 
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in the pump can be expressed in a vector form such as: 

 ( ) ( )f f
p fpb= −Δ ×F k AB , (12) 

where pΔ  is the pressure drop at the pump and b is the gear 
width. 
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Figure 2. Fluid pressure force and contact forces that act on the inner gear 
at a random instant ( 55aϕ = ) [18] 

The vector AB  that connects two contact points at the 
separation borderline between the suction inlet chambers 
and the pressure outlet chambers zones can be expressed as 
a difference between the position vectors for these points in 
a stationary coordinate system as: 

 ( ) ( ) ( )

( ) ( )

( ) ( )

0

f f
B A

f f f ff
B BA A

x x
y y
⎡ ⎤−
⎢ ⎥

= − = −⎢ ⎥
⎢ ⎥
⎣ ⎦

AB r r . (13) 

When equation (13) is inserted into equation (12) the 
following resulting expression is obtained: 

 ( )

( ) ( ) ( ) ( )
0 0 1

0

f f f
f

p
f f f f

B BA A

pb
x x y y

= −Δ
− −

i j k
F . (14) 

The moment of the equivalent pressure force, in relation 
with the current center of the rotation C can be expressed in 
the following form of the vector multiplication equation: 

 ( ) ( ) ( )f f f
p p= ×M CS F , (15) 

where S is the central point of the vector AB  (Fig.2). 
Based on the geometric relations shown in Fig.2, the 

following vector relations can be written as: 

 ( )1
2= +CS CA CB . (16) 

By applying the rules of vector addition, the following 
expression is obtained: 

 ( ) ( ) ( )( ) ( ) ( )( )1
2

f f f ff
f fx x y y⎡ ⎤= + + +⎣ ⎦CA CB CA CBCS i j . (17) 

Starting with equation (12), the equivalent pressure force 
can be expressed by the next form:  

 ( ) ( ) ( )( ) ( ) ( )( )f f f ff
p f fpb y y x x⎡ ⎤= Δ − − −⎣ ⎦CB CA CB CAF i j . (18) 

By putting equations (17) and (18) into (15), the 
equivalent pressure force moment in the pump can be 
expressed in the form of the following relation: 

 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 02 2
0

f f f
f f f ff

p

f f f f

x x y y

pb y y pb x x

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ − −Δ −⎣ ⎦ ⎣ ⎦

CB CA CB CA

CB CA CB CA

i j k

M ,  (19) 

which can be represented in the simpler form as: 

 ( ) ( )2 2

2
f

p f
pbΔ= −M CA CB k . (20) 

The resultant of all the contact forces that act on the 
inner gear is obtained as their vector sum:  

 
1

z

n ni
i=

=∑F F  (21) 

whereby its vector endpoint coincides with the kinematic 
pole C. 

After the realised procedure and with the application of 
the obtained expressions for calculating external load, the 
analysis of load distribution can be started. Two cases are 
distinguished as follows [17, 18, 19]: 
1. case I, when the vector line of pressure force goes be-

tween the centers of the gears; 
2. case II, when the vector line of pressure force does not 

go between the centers of the gears. 
For both cases, a position exists for which the vector line 

of pressure force goes through the center aO , which points 
to the moment when, theoretically, the contact forces do not 
exist, i.e. some teeth leave the contact and contact load is 
transferred to another teeth. Then, in case II, the moment of 
contact forces changes its sign.  

Unlike with models with planetary movement, where 
fluid pressure force is balanced by the resultant of contact 
forces, the support reaction, denoted as 1F , is included in 
equilibrium equations for the model used in this paper. 
Unknown forces that act on the gear, including the support 
reaction, are determined from the conditions of equilibrium, 
for the two-dimensional system of forces, i.e. it is necessary 
for both the resultant force and the resultant moment to be 
equal to zero. For the observed pump model, the force 
equilibrium equation in a vector form can be written as: 

 1 0p n+ + =F F F . (22) 

Then, the moment of equilibrium equations can be 
written, in relation to the point tO : 

 ( ) ( ) 1 0p t n tF O F O+ + =M M M  (23) 

and in relation to the point aO : 

 ( ) ( ) 0p a n aF O F O+ =M M . (24) 

When the moments from the previous equations are 
expressed in a form of vector multiplication equations, the 
following expressions are obtained: 

 1 0t p t n× + × + =Ο S F O C F M  (25) 

and 
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 0a p a n× + × =Ο S F O C F  (26) 

From equations (24) and (26), the moment of contact 
forces can be expressed as:  

 ( )
( )

( )
( ) ( ) ( )

n a p a
f f f f

a pF O F O= − = − ×M M O S F . (27) 

Based on the geometric relations shown in Fig.2, the 
following vector relation can be written: 

 ( )1
2t t t= +O S O A O B , (28) 

That is, 

 ( ) ( ) ( )( ) ( ) ( )( )1
2

f f f ff
t f fB BA Ax x y y⎡ ⎤= + + +⎣ ⎦O S i j . (29) 

In a similar way, the following relations can be written: 

 a t t a= −O S O S O O , (30) 

 ( )
a
f

t fe= −O O i  (31) 

and after their arrangement, the final expression is obtained 
as:  

 ( ) ( ) ( )( ) ( ) ( )( )1 22
f f f ff

a f fB BA Ax x e y y⎡ ⎤= + + + +⎣ ⎦O S i j . (32) 

By putting equations (14) and (32) into (27), the moment 
of equivalent contact force in relation to the point aO , can 
be expressed in a form of the following vector relation: 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 12 02 2
0

n a

f f f
f f f f f

B BA AF O

f f f f
B BA A

x x e y y

pb y y pb x x

⎡ ⎤ ⎡ ⎤= − + + − +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−Δ − Δ −⎣ ⎦ ⎣ ⎦

i j k

M  (33) 

or in a scalar form as: 

 ( )
( ) ( ) ( ) ( ) ( ){ }2 2

22n a
f f f f f

B BA AF O
pb r r e x xΔ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦M . (34) 

The moment of equivalent contact force in relation to the 
point tO , can be written in a form of the following vector 
relation: 

 ( )
( ) ( ) ( )

p t
f f f

t pF O = ×M O S F  (35) 

which, by putting equations (29) and (14) in it, results in the 
following form: 

 ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 02 2
0

p t

f f f
f f f f f

B BA AF O

f f f f
B BA A

x x y y

pb y y pb x x

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤−Δ − Δ −⎣ ⎦ ⎣ ⎦

i j k

M (36) 

The equation can be expressed in a scalar form as: 

 ( )
( ) ( ) ( ){ }2 2

2p t
f f f

BAF O
pb r rΔ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦M . (37) 

In equation (22), only the vector of the fluid pressure 
force, pF , is completely defined. Because of that, it is 
suitable for further calculation to write equation (23) in a 
scalar form as: 

 ( ) ( )1
1

p t p aF O F O
zM M M z
−= − + , (38) 

and then the moment of equivalent contact force can be 
determined, in relation to the center of the inner gear, tO , 
which is necessary for the calculation of the contact forces. 

Contact forces 
During the gear motion, total normal load is transferred 

by synchronous teeth meshing of the gearing pair. The 
influence of the normal force niF  on the meshing teeth 
provokes the appearance of the local deformation of the 
tooth and shifting of the contact point of niw  magnitude, in 
direction of the force action. The consequence of the 
deformation is the angle of the displacement υ and based on 
Fig.2, the relations can be established between them as 
follows: 

 ( ) sin ii
f

ni PPw r υ α= , (42) 

with an assumption that the elementary angle of the 
displacement υ  is equal for all contact points [20]. In 
equation (42), iPα  is the angle between the direction that 
connects the center of the inner gear, tO  with the contact 
point iP  and of the vector line of the normal force niF . 

The normal force is proportional to the deformation in 
the normal direction as: 

 ni niF kw= , (43) 

where k is gear rigidity and is considered to be a constant. 
Based on the geometric relations that apply to the triangle 

t iO PC  according to Fig.2, the following can be stated: 

 ( ) ( ) sin1 sini
i

f ni
P

P
r e z α

α
= −  (44) 

where niα  is the angle between the fx  axis and the iCP  
vector, as given in Fig.2. 

For the determination of the niα  angle, it is necessary to 

define the ( )
i

fCP  vector. The position vector of the point C 

in the f f f fO x y z  coordinative system can be written in the 
following form: 

 ( ) ( )1f
fC e z= −r i  (45) 

Going from the geometric relation given in Fig.2 and equations 
(11) and (45), the ( )

i
fCP  vector can be expressed as: 

 ( ) ( ) ( )
i i

f f f
CP= −CP r r  (46) 

 ( )
( ) ( )[ ]
( ) ( )[ ]

cos cos
sin sin

1

i i i
f

i i ii

e z z c
e z c
λ τ ψ τ ψ δ
λ τ ψ τ ψ δ

− − − − +⎡ ⎤
⎢ ⎥= − − − +⎢ ⎥
⎢ ⎥⎣ ⎦

CP  (47) 

and the angle niα  as: 

 
( )

( )arctan i

i

f

ni f

y

x
α = CP

CP

. (48) 
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If the deformation niw  in the contact point iP  is larger 
than zero, it means that contact is realised in that point. 
However, if the deformation niw  in the contact point iP  is 
negative or equal to zero, contact is not realised and those 
contact points do not participate in load distribution. A total 
moment of normal forces is equal to the sum of the 
moments of normal forces for individual teeth pairs, around 
the gear center as: 

 ( ) ( ) ( )22 21 sinn t ni t

q q

niF O F O
i p i p

M M k e zυ α
= =

= = −∑ ∑  (49) 

where p and q are ordinal numbers of the starting and the 
final tooth of the outer gear, which transfer load and kυ  is 
an introduced constant equal to k kυ υ= . The constant kυ , 
whose value is necessary for the calculation of the contact 
forces, is obtained by the iterative procedure of solving 
equation (49) with the application of the following 
condition: 

 ( ) ( )
1

n t p aF O F O
zM Mz
−= . (50) 

After the identification procedure of the teeth pairs that 
transfer load and contact forces calculation, an appropriate 
contact stress calculation is realised by using methods 
presented within references [16, 17]. A graphical 
representation of the analytical calculation of torque 
moments is given in Fig.3 and of contact forces in Fig.4. 
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Figure 3. Results of the analytical calculation of the torque: (a) z=6 and 
(b) z=5 

In order to illustrate the proposed procedures for the 
analysis of load trochoidal gear pairs as well as the 
comparative analysis of the results, two gear sets are 
selected, with their geometrical parameters given in Table 
1. Other parameters are: e=3.56 mm, b=16.46 mm, rs=26.94 
mm, Δp=0.6 MPa, ρf=900 kg/m3, nt=1500 rpm, 

12 50t tn sω π π −= = . 

Table 1: Geometrical parameters for the two gear set 

Parameters z λ c 
Gear set I 5 1.85 3.75 
Gear set II 6 1.575 3.95 

Other parameters are: e=3.56 mm, b=16.46 mm, 
rs=26.94 mm, Δp=0.6 MPa, ρf=900 kg/m3, nt=1500 rpm, 

12 50t tn sω π π −= = . 

The results are presented in the function of the reference 
angle ϕa, for a period corresponding to the phase difference 
between two adjacent chambers, ie. ϕa=2π/z, where the 
calculation repeated for nine angular positions. 
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Figure 4: Results of the analytical calculation of the contact forces: (a) 
z=6 and  (b) z=5 

After the comparison of charts for various models of 
pumps, it can be concluded that the model with an odd 
number of teeth (z = 5) has a different character torque 
ripple from the model with even numbers of teeth, and the 
different distributions of the contact force. This is the 
implication of changing the sign of the contact force 
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moment during one phase of the work process. The highest 
values of the contact force are realized in the initial stages 
of the working process and they are increased in the pump 
with an odd number of chambers. It can be seen in Fig.4, 
where the teeth denoted with 4 and 5 do not make contact 
during the consideration phase. 

Analysis of forces and moments by the application 
of the finite elements method 

The load simulation for the trochoidal pump gears by the 
application of the CATIA software module for structural 
analysis is presented in this part of the paper. In order to 
realize the structural analysis, it is necessary to follow a 
certain procedure [18], which will be described in the 
following text. 

Geometric model 
A basic model used in the structural analysis corresponds 

to the inner cylindrical gear of the trochoidal pump. The 
geometric model is created within the PART module of the 
CATIA software package. It starts from the geometric 
shape of the profile of the cylindrical gear teeth based on 
the analytical-kinematic model [18], and by running the 
built computer program. The main CAD model of the 
unloaded gear contains 20 line segments.  

Grid generating 
During the first phase of the numerical model 

preparation, a three-dimensional tetrahedral grid of variable 
fineness is generated. A part of the grid around the contact 
force line is with discrete elements of the biggest fineness 
(0.75 mm element side length) and the rest is done with an 
element size of 1.5 mm. The gear shown in Fig.5 is 
modeled with 6779 nodes and 29260 finite elements, and 
the gear in Fig.6 is modeled with 6546 nodes and 27861 
finite elements. 

Boundary conditions of the numerical model 
The boundary conditions are defined in accordance with 

the theoretical analysis of gears. The motion limit is set up 
on the surface that lies on the drive shaft and here all types 
of motion are forbidden such as: radial, axial and all 
rotations. In order to obtain the results, the torque moment 
and the support reaction force as well as the sensor in the 
gear section plane are defined. 

Mechanical loads in the numerical model 
During pre-processing, it is necessary to enter values for 

the forces that react with the gear, therefore defining all 
necessary parameters for processing, i.e. for the structural 
analysis by the finite elements method. For structure load, 
the relative pressure at the suction inlet and at the pressure 
outlet side is set up as well as the contact forces. The 
assumption is also made that the normal force niF  is evenly 
distributed along the current line of the teeth flanks contact. 
By this, a computation model is completely described and 
statically determined.  

The fluid pressure force is simulated by concentrated 
forces which act perpendicularly to the finite elements 
surfaces, which is illustrated in Fig.5. The presentation of 
the input forces for the load state with the angular position 
ϕa=25° is given in Fig.6, and for ϕa=24° in Fig.7. 

 

Slika 5. Detail of the visualization of the discrete load gear 

 

 

Figure 6. Model of the discrete gear simulation with forces defined and 
the results of visualization, z=6 
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Figure 7. Model of the discrete gear simulation with forces defined and 
the results of visualization, z=5 

Within the scope of static investigations, two separate 
computations are made: 
1. only fluid pressure is set up as a structure load in the 

first case,  
2. fluid pressure and contact forces are set up as a structure 

load in the second case. 
The output results for the first case are the fluid pressure 

force and the moment which is equivalent to the contact 
forces moment. The obtained results are used for the 
analytical determination of contact forces. After the 
calculation of forces, the input of load to the model is done 
and then the calculation is realised with the drive moment 
and the support reaction force as output results. The second 
case is related to the real system, while the first case is 
comparatively important and issues data necessary for the 
load simulation in the second case. The output results are 
support reaction force and the drive moment as shown in 
Fig.7. The direct readout of the values of their projections 
on global coordinative system axes is enabled as well as the 
readout of the resulting algebraic values that has been used 
for the diagram drawing.  

Graphical presentation and the analysis of computational 
results 

It was necessary to repeat the procedure of the structural 
analysis several times for each chosen gear model, in order 
to realize the numerical computation. The number of 
repeating was nine for the computation model, i.e. eighteen 
for both calculations. The analysis was done for different 
angular positions starting from ϕa=0 until the final position 
that corresponds to the starting position of the following 
tooth, i.e. ϕa=2π/z (Table 2). 

Table 2: Angle positions of the gears for the load calculation  

ϕa [°] 
Positions 

z=6 z=5 
 0 0 
 5 12 
 15 24 
 25 27,6155 
 30 36 
 35 44,3845 
 45 48 
 55 60 

 60 72 

The comparative values of the drive moment obtained by 
the analytical and the numerical method are shown in Fig.8. 
A very slight deviation of values indicates that the 
previously mentioned approximation, where the continuous 
force is represented by the equivalent concentrated pressure 
force, can be used for analytical calculations of load 
distribution at trochoidal pumps. 

 
(a) 

 
(b) 

Figure 8. Results of the analytical and numerical calculations: (a) z=6 and 
(b) z=5 

The comparative values of the fluid pressure force 
obtained by the analytical and the numerical methods for 
individual angular positions are shown in Fig.9.  
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(a) 

 
(b) 

Figure 9. Results of the analytical and the numerical computations of the 
fluid pressure force: (a) z=6 and (b) z=5 

 
(a) 

 
(b) 

Figure 10. Charts of the numerical calculations as results of the fluid 
pressure force and the support reaction: (a) z=6 and (b) z=5 

The dependence of the fluid pressure force pF  and the 
support reaction force 1F  on the reference rotation angle, 
for one phase of the pump working process, for both gear 
sets, is shown on the charts in Fig.10. These charts provide 
information on the domain of the force equivalent to the 
contact forces resultant as well as information about the 

angular position where the interchange of load between the 
adjacent teeth occurs.  

Conclusions 
On the basis of the derived results, it can be concluded 

that the pumps with the same kinematic scheme, but with a 
different number of teeth, can have different static load 
models. Using the analytical method, the identification of 
teeth contact during one phase of the working process 
pumps is performed as well as the calculation of the contact 
force and the working moments. The highest values of the 
contact force are realized in the initial stages of the working 
process. They are also higher in the pump with an odd 
number of chambers. The values of the fluid pressure force 

pF  and the drive moment 1M , obtained by numerical 
computation, are only slightly different from their 
analytical results. Both analytical and numerical method 
give satisfactory results necessary in analysing the 
influence of the variation of input parameters on the 
magnitude of contact forces. 

Further research will be focused on the analysis of 
contact stress changes at gerotor pumps and the 
development of a model to identify the optimal geometric 
parameters of trochoidal gearing, towards the reducing of 
maximum contact stress. 
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Analitička i numerička analiza opterećenja gerotorskih pumpi 
U ovom radu se razmatraju sile i momenti koji deluju na zupčasti par gerotorske pumpe. Cilj ovog rada je analiza 
uticaja broja komora pumpe na raspodelu opterećenja trohoidnih pumpi sa nepokretnim osama vratila. Problem 
određivanja kontaktnih sila je kompleksan s obzirom na to da se kod pumpi sa trohoidnim ozubljenjem opterećenje 
prenosi istovremeno u više tačaka dodira. Osim toga, razmatraju se sile pritiska fluida koje deluju na bokove zubaca 
zupčanika, a koje zavise od velikog broja uticajnih parametara. Iz tih razloga, primenjen je jednostavan fizički model 
i odgovarajuća analitička metoda. U ovom modelu kontinualna sila pritiska se aproksimira koncentrisanom silom čija 
je napadna tačka u središtu linije razdvajanja usisne i potisne zone. Za verifikaciju analitičke metode, kao i za 
proračun trenutnih momenata i reakcije oslonca primenjena je metoda konačnih elemenata. 

Ključne reči: pumpe, gerotor, zupčasti par, ozubljenje, kontaktno opterećenje, analiza opterećenja, analiza sila, 
metoda konačnih elemenata. 

Аналитический и цифровой анализ нагрузки героторных насосов 
В настоящей работе рассматриваются силы и моменты действующие на зубчатую пару героторного насоса. 
Целью этой работы является анализ влияния числа камер насоса на распределение нагрузки трохоидальных 
насосов с неподвижными осами вала. Проблема определения контактных сил очень сложная, учитывая то, 
что у насосов с трохоидальной насечкой нагрузка передаётся одновременно в большое число точек 
соприкосновения. Кроме того, здесь рассматриваются силы напряжения жидкостей действующие  на боки 
зубцов у зубчатого колеса, которые зависят от большого числа влияющих параметров. Из-за этих причин, 
применена простая физическая модель и соответствующий аналитический метод. В этой модели 
непрерывная сила давления приблизительно определяется силой сосредоточения, чья точка приложения 
находится в фокусе линии отрыва зоны всасывания от зоны тяги. Для контроля и официального 
подтверждения аналитического метода, а в том числе и расчёта мгновенных моментов и опорной реакции 
здесь применён метод конечных элементов. 

Kly~evwe slova: Насосы, геротор, зубчатая пара, насечка, контактная нагрузка, анализ нагрузки, анализ 
сил, метод конечных элементов.  

Analyse analytique et numérique de la charge chez les pompes gérotors 
Les forces et les moments qui agissent sur le pair denté des pompes gérotors sont considérés dans ce papier. Le but de 
ce travail est l’analyse de l’influence du nombre des chambres de la pompe sur la distribution de la charge chez les 
pompes trochoïdales aux axes fixes des arbres. Le problème de la détermination des forces de contact est complexe 
étant donné que la charge est transférée simultanément à plusieurs points de contact chez les pompes aux dentures 
trochoïdales. En outre, on considère les forces de pression du fluide qui agissent aux flancs des dents de l’engrenage et 
ces forces dépendent de nombreux paramètres importants. Pour cette raison, on a utilisé un modèle physique simple 
ainsi qu’une méthode analytique appropriées. Chez ce modèle la force continue de pression se rapproche à la force 
concentrée dont le point d’attaque se trouve au centre de la ligne de démarcation de la zone de succion et de celle de la 
poussée. Pour vérifier la méthode analytique, ainsi que la computation des moments courants et la réaction du 
support, on a employé la méthode des éléments finis. 

Mots clés: pompe, gérotor, pair de dents, denture, charge de contact, analyse de la charge, analyse des forces, méthode 
des éléments finis. 




